Chemical Reaction in an Interface Layer Consisting of Metal, Electrolyte and Air Generated during Zinc Electroplating

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fate of zinc in an electroplating sludge during electrokinetic treatments.

Chemical structure of zinc in the electrokinetic treatments of an electroplating sludge has been studied by in situ extended X-ray absorption fine structural (EXAFS) and X-ray absorption near edge structural (XANES) spectroscopies in the present work. The least-square fitted XANES spectra indicate that the main zinc compounds in the sludge were ZnCO(3) (75%), ZnOSiO(2) (17%) and Zn(OH)(2) (7%)....

متن کامل

Mixed-Potential Gas Sensors Using an Electrolyte Consisting of Zinc Phosphate Glass and Benzimidazole

Mixed-potential gas sensors with a proton conductor consisting of zinc metaphosphate glass and benzimidazole were fabricated for the detection of hydrogen produced by intestinal bacteria in dry and humid air. The gas sensor consisting of an alumina substrate with platinum and gold electrodes showed good response to different hydrogen concentrations from 250 parts per million (ppm) to 25,000 ppm...

متن کامل

development and implementation of an optimized control strategy for induction machine in an electric vehicle

in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of The Surface Finishing Society of Japan

سال: 2008

ISSN: 0915-1869

DOI: 10.4139/sfj.59.543